OFFSET
1,5
COMMENTS
LINKS
Bjarki Ágúst Guðmundsson, Table of n, a(n) for n = 1..5050
Andrei Asinowski, Cyril Banderier, Sara Billey, Benjamin Hackl, Svante Linusson, Pop-stack sorting and its image: Permutations with overlapping runs (2019), preprint.
Anders Claesson, Bjarki Ágúst Guðmundsson, Jay Pantone, Counting pop-stacked permutations in polynomial time, arXiv:1908.08910 [math.CO], 2019.
FORMULA
G.f. for column k=1: x/(1-x).
G.f. for column k=2: 2*x^3/((1-x)^2*(1-2*x)).
G.f. for column k=3: -2*x^4*(6*x^2 - 3*x - 1)/((1-x)^3*(1-2*x)^2*(1-3*x)).
G.f. for column k=4: -2*x^6*(144*x^4 - 180*x^3 - 5*x^2 + 74*x - 21)/((1-x)^4*(1-2*x)^3*(1-3*x)^2*(1-4*x)).
G.f. for column k=5: 2*x^7*(17280*x^8 - 37600*x^7 + 12784*x^6 + 33060*x^5 - 40581*x^4 + 18982*x^3 - 3856*x^2 + 198*x + 21)/((1-x)^5*(1-2*x)^4*(1-3*x)^3*(1-4*x)^2*(1-5*x)).
EXAMPLE
For n = 3 the permutations with overlapping runs are 123, 132, 213. The first has k = 1 runs, the other two have k = 2 runs. Thus T(3,1) = 1, T(3,2) = 2, T(3,3) = 0.
Triangle begins:
1;
1, 0;
1, 2, 0;
1, 8, 2, 0;
1, 22, 26, 0, 0;
1, 52, 168, 42, 0, 0;
1, 114, 804, 692, 42, 0, 0;
1, 240, 3270, 6500, 1866, 0, 0, 0;
1, 494, 12054, 46304, 34078, 3060, 0, 0, 0;
1, 1004, 41708, 279566, 413878, 122830, 3060, 0, 0, 0;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Bjarki Ágúst Guðmundsson, Aug 26 2019
STATUS
approved