login
A309934
Primes p such that p+2, (p+1)||p and (p+1)||(p+2) are primes (where || denotes concatenation in base 10).
1
41, 101, 107, 179, 191, 269, 311, 419, 521, 659, 821, 881, 1229, 1481, 4241, 4787, 8819, 10331, 11549, 13691, 14549, 14561, 14867, 15731, 17909, 18521, 20549, 21647, 22619, 23669, 23831, 26261, 27737, 35837, 38921, 39041, 40127, 42017, 43961, 44531, 46439, 47711, 48119, 48821
OFFSET
1,1
LINKS
EXAMPLE
a(3)=107 is in the sequence because 107, 109, 108107 and 108109 are primes.
MAPLE
Res:= {}:
for d from 1 to 6 do
P:= select(isprime, {seq(i, i=10^(d-1)+1..10^d, 2)});
T:= P intersect map(`-`, P, 2);
Res:= Res union select(p -> isprime((10^d+1)*p+10^d) and isprime((10^d+1)*p+10^d+2), T);
od:
sort(convert(Res, list));
MATHEMATICA
cm[{a_, b_}]:=Module[{m=(a+b)/2, il}, il=IntegerLength[m]; AllTrue[m*10^il+{a, b}, PrimeQ]]; Select[ Partition[Prime[Range[5100]], 2, 1], #[[2]]-#[[1]]==2&&cm[#]&][[;; , 1]] (* Harvey P. Dale, Feb 17 2024 *)
PROG
(Magma) [p:p in PrimesUpTo(2200)|IsPrime(p+2) and IsPrime(Seqint(Intseq(p) cat Intseq(p+1))) and IsPrime(Seqint(Intseq(p+2) cat Intseq(p+1)))]; // Marius A. Burtea, Aug 23 2019
(PARI) isok(k) = isprime(k) && isprime(k+2) && isprime(eval(Str(k+1, k))) && isprime(eval(Str(k+1, k+2))); \\ Jinyuan Wang, Aug 26 2019
CROSSREFS
Sequence in context: A142658 A228573 A273363 * A126588 A142794 A225888
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Aug 23 2019
STATUS
approved