OFFSET
2,1
COMMENTS
The article by Costa and Harvey provides an improved unconditional deterministic complexity bound for computing the prime factorization of an integer N as O(M_int(N^(1/4)*log(N)/sqrt(log(log(N))))), where M_int(k) denotes the cost of multiplying k-bit integers. The sequence shows values of the M_int argument for N=2^n.
LINKS
Edgar Costa, David Harvey, Faster deterministic integer factorization, arXiv:1201.2116v1 [math.NT] 10 Jan 2012.
Edgar Costa, David Harvey, Faster deterministic integer factorization, Math. Comp. 83 (2014), 339-345.
PROG
(PARI) cn(N)=N^0.25*log(N)/sqrt(log(log(N)));
for(k=2, 50, print1(round(cn(2^k)), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Aug 23 2019
STATUS
approved