login
A309912
a(n) = Product_{p prime, p <= n} floor(n/p).
0
1, 1, 1, 1, 2, 2, 6, 6, 8, 12, 30, 30, 48, 48, 112, 210, 240, 240, 324, 324, 480, 840, 1848, 1848, 2304, 2880, 6240, 7020, 10080, 10080, 14400, 14400, 15360, 25344, 53856, 78540, 90720, 90720, 191520, 311220, 374400, 374400, 508032, 508032, 709632, 855360, 1788480, 1788480
OFFSET
0,5
COMMENTS
Product of exponents of prime factorization of A048803 (squarefree factorials).
FORMULA
a(n) = Product_{k=1..A000720(n)} floor(n/A000040(k)).
a(n) = A005361(A048803(n)).
EXAMPLE
A048803(14) = 1816214400 = 2^7 * 3^4 * 5^2 * 7^2 * 11 * 13 so a(14) = 7 * 4 * 2 * 2 * 1 * 1 = 112.
MAPLE
a:= n-> mul(floor(n/p), p=select(isprime, [$2..n])):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 23 2019
MATHEMATICA
Table[Product[Floor[n/Prime[k]], {k, 1, PrimePi[n]}], {n, 0, 47}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 22 2019
STATUS
approved