login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309905 Approximation of the 7-adic integer exp(-7) up to 7^n. 4
0, 1, 43, 190, 1562, 6364, 56785, 645030, 3115659, 14645261, 14645261, 297120510, 8206427482, 22047714683, 118936725090, 118936725090, 23856744274805, 123555535983608, 588816563958022, 5474057357689369, 51069638099181941, 51069638099181941 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In p-adic field, the exponential function exp(x) is defined as Sum_{k>=0} x^k/k!. When extended to a function over the metric completion of the p-adic field, exp(x) has radius of convergence p^(-1/(p-1)) (i.e., exp(x) converges for x such that |x|_p < p^(-1/(p-1)), where |x|_p is the p-adic metric). As a result, for odd primes p, exp(p) is well-defined in p-adic field, and exp(4) is well defined in 2-adic field.

a(n) is the multiplicative inverse of A309904(n) modulo 7^n.

LINKS

Table of n, a(n) for n=0..21.

Wikipedia, p-adic number

PROG

(PARI) a(n) = lift(exp(-7 + O(7^n)))

CROSSREFS

Cf. A309904.

The 7-adic expansion of exp(-7) is given by A309988.

Approximations of exp(-p) in p-adic field: A309901 (p=3), A309903 (p=5), this sequence (p=7).

Sequence in context: A158628 A123597 A138631 * A142115 A141941 A197887

Adjacent sequences:  A309902 A309903 A309904 * A309906 A309907 A309908

KEYWORD

nonn

AUTHOR

Jianing Song, Aug 21 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 03:32 EST 2021. Contains 340360 sequences. (Running on oeis4.)