The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309897 Number of not unique partition coefficients of n. 2
 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 6, 9, 13, 22, 33, 51, 74, 104, 142, 194, 261, 351, 464, 616, 802, 1047, 1344, 1716, 2186, 2766, 3473, 4367, 5448, 6774, 8375, 10329, 12685, 15553, 18982, 23098, 28046, 33966, 40976, 49381, 59301, 71095, 85017, 101491, 120859 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS We call (p1+p2+ ...)! / (p1!*p2!*p3! ...) a 'partition coefficient' of n if (p1, p2, p3, ...) is a partition, n = p1 + p2 + ... and denote it by P(n, p). LINKS FORMULA a(n) = A000041(n) - A070289(n). EXAMPLE a(7) = 1 because the partition coefficients of 7 are [1, 7, 21, 42, 35, 105, 210, 140, 210, 420, 840, 630, 1260, 2520, 5040], P(7, [3, 2, 2]) = P(7, [4, 1, 1, 1]) = 210 and all other partition coefficients are unique. We say that two partitions of n are multinomial-equivalent if they have the same partition coefficient. For instance [6, 2, 2, 1, 1] ~ [5, 4, 1, 1, 1] ~ [5, 3, 2, 2] and [6, 4, 1, 1, 1, 1, 1] ~ [6, 3, 2, 2, 1, 1] ~ [5, 4, 3, 1, 1, 1] ~ [5, 3, 3, 2, 2]. MAPLE h := proc(n, k) option remember; if n = 0 then return [1] elif k < 1 then return [] fi; [h(n, k-1)[], seq(map(x -> x*k!^j, h(n-k*j, k-1))[], j=1..n/k)] end: A309897 := proc(n) h(n, n); nops(%) - nops(convert(%, set)) end: seq(A309897(n), n=0..48); PROG (SageMath) def A309897(n):     P = Partitions(n)     M = [multinomial(x) for x in P]     return len(M) - len(Set(M)) print [A309897(n) for n in range(49)] CROSSREFS Cf. A000041, A070289. Sequence in context: A308824 A039903 A280422 * A128955 A215523 A306247 Adjacent sequences:  A309894 A309895 A309896 * A309898 A309899 A309900 KEYWORD nonn AUTHOR Peter Luschny, Sep 06 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 13:14 EST 2020. Contains 331321 sequences. (Running on oeis4.)