OFFSET
0,9
COMMENTS
We call (p1+p2+ ...)! / (p1!*p2!*p3! ...) a 'partition coefficient' of n if (p1, p2, p3, ...) is a partition, n = p1 + p2 + ... and denote it by P(n, p).
EXAMPLE
a(7) = 1 because the partition coefficients of 7 are [1, 7, 21, 42, 35, 105, 210, 140, 210, 420, 840, 630, 1260, 2520, 5040], P(7, [3, 2, 2]) = P(7, [4, 1, 1, 1]) = 210 and all other partition coefficients are unique.
We say that two partitions of n are multinomial-equivalent if they have the same partition coefficient. For instance [6, 2, 2, 1, 1] ~ [5, 4, 1, 1, 1] ~ [5, 3, 2, 2] and [6, 4, 1, 1, 1, 1, 1] ~ [6, 3, 2, 2, 1, 1] ~ [5, 4, 3, 1, 1, 1] ~ [5, 3, 3, 2, 2].
MAPLE
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 06 2019
STATUS
approved