login
A309892
a(0) = 0, a(1) = 1, and for any n > 1, a(n) is the number of iterations of the map x -> x - gpf(x) (where gpf(x) denotes the greatest prime factor of x) required to reach 0 starting from n.
7
0, 1, 1, 1, 2, 1, 2, 1, 3, 3, 2, 1, 4, 1, 2, 3, 3, 1, 4, 1, 4, 3, 2, 1, 4, 5, 2, 5, 4, 1, 6, 1, 7, 3, 2, 5, 4, 1, 2, 3, 6, 1, 6, 1, 4, 7, 2, 1, 8, 7, 8, 3, 4, 1, 4, 5, 8, 3, 2, 1, 6, 1, 2, 9, 3, 5, 6, 1, 4, 3, 10, 1, 4, 1, 2, 11, 4, 7, 6, 1, 12, 7, 2, 1, 8, 5
OFFSET
0,5
COMMENTS
This sequence is similar to A175126: here we subtract the greatest prime factor, there the least prime factor.
FORMULA
a(n) <= n / A006530(n) for any n > 0.
a(n) = n if n <= 1, for n >= 2, a(n) = 1+a(A076563(n)). - Antti Karttunen, Aug 22 2019
EXAMPLE
For n = 16:
- the greatest prime factor of 16 is 2,
- the greatest prime factor of 16-2 = 14 is 7,
- the greatest prime factor of 14-7 = 7 is 7,
- 7 - 7 = 0,
- hence a(16) = 3.
PROG
(PARI) a(n) = for (k=0, oo, if (n==0, return (k), n==1, n--, my (f=factor(n)); n-=f[#f~, 1]))
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Aug 21 2019
STATUS
approved