The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309882 Sum of the even parts appearing among the fourth largest parts of the partitions of n into 5 parts. 3
 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 6, 10, 14, 18, 24, 30, 40, 52, 68, 88, 110, 136, 166, 198, 240, 286, 340, 404, 478, 560, 652, 754, 872, 1000, 1146, 1308, 1488, 1686, 1908, 2148, 2416, 2708, 3028, 3376, 3758, 4168, 4616, 5098, 5630, 6200, 6816, 7482, 8198 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 LINKS Index entries for linear recurrences with constant coefficients, signature (3, -4, 4, -4, 4, -4, 4, -2, -2, 6, -10, 12, -12, 12, -12, 11, -9, 4, 4, -9, 11, -12, 12, -12, 12, -10, 6, -2, -2, 4, -4, 4, -4, 4, -4, 3, -1). FORMULA a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} k * ((k-1) mod 2). a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 4*a(n-4) + 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - 2*a(n-8) - 2*a(n-9) + 6*a(n-10) - 10*a(n-11) + 12*a(n-12) - 12*a(n-13) + 12*a(n-14) - 12*a(n-15) + 11*a(n-16) - 9*a(n-17) + 4*a(n-18) + 4*a(n-19) - 9*a(n-20) + 11*a(n-21) - 12*a(n-22) + 12*a(n-23) - 12*a(n-24) + 12*a(n-25) - 10*a(n-26) + 6*a(n-27) - 2*a(n-28) - 2*a(n-29) + 4*a(n-30) - 4*a(n-31) + 4*a(n-32) - 4*a(n-33) + 4*a(n-34) - 4*a(n-35) + 3*a(n-36) - a(n-37) for n > 36. EXAMPLE Figure 1: The partitions of n into 5 parts for n = 10, 11, ..                                                        1+1+1+1+10                                                         1+1+1+2+9                                                         1+1+1+3+8                                                         1+1+1+4+7                                                         1+1+1+5+6                                             1+1+1+1+9   1+1+2+2+8                                             1+1+1+2+8   1+1+2+3+7                                             1+1+1+3+7   1+1+2+4+6                                             1+1+1+4+6   1+1+2+5+5                                             1+1+1+5+5   1+1+3+3+6                                 1+1+1+1+8   1+1+2+2+7   1+1+3+4+5                                 1+1+1+2+7   1+1+2+3+6   1+1+4+4+4                                 1+1+1+3+6   1+1+2+4+5   1+2+2+2+7                     1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6                     1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5                     1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5         1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4         1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4         1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6         1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5         1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4         1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4         2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3 --------------------------------------------------------------------------   n  |     10          11          12          13          14        ... -------------------------------------------------------------------------- a(n) |      4           6          10          14          18        ... -------------------------------------------------------------------------- MATHEMATICA Table[Sum[Sum[Sum[Sum[k * Mod[k - 1, 2], {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}] LinearRecurrence[{3, -4, 4, -4, 4, -4, 4, -2, -2, 6, -10, 12, -12,   12, -12, 11, -9, 4, 4, -9, 11, -12, 12, -12, 12, -10, 6, -2, -2,   4, -4, 4, -4, 4, -4, 3, -1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 6,   10, 14, 18, 24, 30, 40, 52, 68, 88, 110, 136, 166, 198, 240, 286,   340, 404, 478, 560, 652, 754, 872, 1000, 1146, 1308}, 50] CROSSREFS Cf. A309879, A309880, A309881. Sequence in context: A059254 A024518 A128422 * A098380 A007782 A035501 Adjacent sequences:  A309879 A309880 A309881 * A309883 A309884 A309885 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt, Aug 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 22:52 EDT 2020. Contains 336335 sequences. (Running on oeis4.)