login
A309881
Number of even parts appearing among the fourth largest parts of the partitions of n into 5 parts.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 19, 24, 30, 37, 45, 54, 64, 75, 88, 102, 118, 136, 156, 178, 202, 228, 257, 288, 322, 359, 399, 442, 489, 539, 593, 651, 713, 779, 850, 925, 1005, 1090, 1181, 1277, 1379, 1487, 1601, 1721, 1848, 1981, 2122
OFFSET
0,11
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} ((k-1) mod 2).
From Colin Barker, Aug 22 2019: (Start)
G.f.: x^9 / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) + a(n-8) - 2*a(n-9) + 2*a(n-10) - 3*a(n-11) + 3*a(n-12) - 2*a(n-13) + 2*a(n-14) - a(n-15) - a(n-18) + 2*a(n-19) - a(n-20) + a(n-21) - 2*a(n-22) + a(n-23) for n>22.
(End)
EXAMPLE
Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
1+1+1+1+10
1+1+1+2+9
1+1+1+3+8
1+1+1+4+7
1+1+1+5+6
1+1+1+1+9 1+1+2+2+8
1+1+1+2+8 1+1+2+3+7
1+1+1+3+7 1+1+2+4+6
1+1+1+4+6 1+1+2+5+5
1+1+1+5+5 1+1+3+3+6
1+1+1+1+8 1+1+2+2+7 1+1+3+4+5
1+1+1+2+7 1+1+2+3+6 1+1+4+4+4
1+1+1+3+6 1+1+2+4+5 1+2+2+2+7
1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6
1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5
1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5
1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4
1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4
1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6
1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5
1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4
1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4
2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3
--------------------------------------------------------------------------
n | 10 11 12 13 14 ...
--------------------------------------------------------------------------
a(n) | 2 3 5 7 9 ...
--------------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Mod[k - 1, 2], {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]
LinearRecurrence[{2, -1, 1, -2, 1, 0, 0, 1, -2, 2, -3, 3, -2, 2, -1,
0, 0, -1, 2, -1, 1, -2, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 5,
7, 9, 12, 15, 19, 24, 30, 37, 45, 54}, 50]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 21 2019
STATUS
approved