login
A309824
Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/3).
4
1, 4, 8, 7, 1, 5, 1, 7, 8, 7, 5, 5, 8, 0, 6, 0, 8, 4, 0, 2, 4, 6, 5, 9, 1, 5, 4, 0, 5, 2, 8, 6, 0, 3, 5, 7, 2, 9, 5, 7, 9, 4, 4, 5, 3, 8, 1, 1, 0, 9, 3, 5, 4, 8, 4, 7, 4, 4, 3, 1, 3, 5, 0, 3, 7, 0, 2, 0, 9, 8, 7, 2, 6, 1, 1, 6, 1, 0, 5, 9, 7, 6, 3, 6, 7, 7, 6, 7, 7, 0, 9, 8, 1, 4, 3, 3, 3, 3, 7, 1
OFFSET
0,2
COMMENTS
x = ...068250451956420480608557871517841.
x^3 = ...123456789876543212345678987654321.
LINKS
EXAMPLE
1^3 == 1 (mod 10).
41^3 == 21 (mod 10^2).
841^3 == 321 (mod 10^3).
7841^3 == 4321 (mod 10^4).
17841^3 == 54321 (mod 10^5).
517841^3 == 654321 (mod 10^6).
1517841^3 == 7654321 (mod 10^7).
71517841^3 == 87654321 (mod 10^8).
871517841^3 == 987654321 (mod 10^9).
7871517841^3 == 8987654321 (mod 10^10).
57871517841^3 == 78987654321 (mod 10^11).
557871517841^3 == 678987654321 (mod 10^12).
8557871517841^3 == 5678987654321 (mod 10^13).
8557871517841^3 == 45678987654321 (mod 10^14).
608557871517841^3 == 345678987654321 (mod 10^15).
608557871517841^3 == 2345678987654321 (mod 10^16).
80608557871517841^3 == 12345678987654321 (mod 10^17).
PROG
(PARI) N=100; M=2345678987654321/(1-10^16); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/3), 2^N), Mod((M+O(5^N))^(1/3), 5^N)))), N)
CROSSREFS
Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/k): this sequence (k=3), A309825 (k=7), A309826 (k=9).
Cf. A309818.
Sequence in context: A019650 A193081 A269574 * A309818 A201658 A146501
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 18 2019
STATUS
approved