login
A309821
Digits of the 10-adic integer (123456789/(1-10^9))^(1/3).
4
9, 2, 8, 8, 5, 6, 4, 6, 4, 7, 5, 2, 1, 8, 4, 9, 6, 6, 2, 8, 9, 9, 4, 5, 1, 1, 1, 4, 2, 8, 2, 7, 9, 9, 4, 1, 1, 4, 3, 9, 3, 5, 1, 8, 3, 2, 5, 7, 4, 3, 0, 7, 7, 1, 4, 8, 7, 8, 5, 8, 7, 3, 8, 8, 5, 6, 0, 8, 3, 1, 7, 8, 0, 3, 2, 7, 3, 7, 6, 6, 0, 2, 6, 1, 7, 9, 8, 9, 4, 0, 9, 6, 7, 6, 1, 8, 3, 8, 8, 1
OFFSET
0,1
COMMENTS
x = ...149972824111549982669481257464658829.
x^3 = ...123456789123456789123456789123456789.
LINKS
EXAMPLE
9^3 == 9 (mod 10).
29^3 == 89 (mod 10^2).
829^3 == 789 (mod 10^3).
8829^3 == 6789 (mod 10^4).
58829^3 == 56789 (mod 10^5).
658829^3 == 456789 (mod 10^6).
4658829^3 == 3456789 (mod 10^7).
64658829^3 == 23456789 (mod 10^8).
464658829^3 == 123456789 (mod 10^9).
PROG
(PARI) N=100; M=123456789/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/3), 2^N), Mod((M+O(5^N))^(1/3), 5^N)))), N)
CROSSREFS
Digits of the 10-adic integer (123456789/(1-10^9))^(1/k): this sequence (k=3), A309822 (k=7), A309823 (k=9).
Cf. A309818.
Sequence in context: A086238 A144664 A241560 * A073007 A157215 A021919
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 18 2019
STATUS
approved