login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309804 a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+4} (prime(i)*x-1). 2
1, 28, 652, 16186, 414849, 11970750, 411154568, 14802996860, 617651235401, 28112591190218, 1330940558814492, 68134228016658366, 3888046744502816953, 244783216404832868510, 15878401438954693327808, 1123935467586630569656024, 83970858613393528568199649 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..16.

FORMULA

a(n) = [x^n] Product_{i=1..n+4} (prime(i)*x-1).

a(n) = abs(A070918(n+4,4)).

a(n) = abs(A238146(n+4,n)) for n>0.

a(n) = A260613(n+4,n).

MAPLE

a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+4), x, n):

seq(a(n), n=0..20);  # Alois P. Heinz, Aug 19 2019

MATHEMATICA

a[n_] := CoefficientList[Series[Product[Prime[i]*x - 1, {i, 1, n+4}], {x, 0, 25}], x] [[n+1]]; Array[a, 17, 0] (* Amiram Eldar, Aug 24 2019 *)

PROG

(PARI) a(n) = polcoef(prod(i=1, n+4, prime(i)*x-1), n); \\ Michel Marcus, Aug 25 2019

CROSSREFS

Cf. A000040, A002110, A024451, A070918, A309802, A309803, A033999, A007504, A024447, A024448, A024449, A054640, A005867, A238146, A260613.

Sequence in context: A240684 A184329 A070310 * A236753 A269473 A278805

Adjacent sequences:  A309801 A309802 A309803 * A309805 A309806 A309808

KEYWORD

nonn,easy

AUTHOR

Alexey V. Bazhin, Aug 17 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 09:53 EST 2019. Contains 329862 sequences. (Running on oeis4.)