login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309730 Expansion of Sum_{k>=1} x^k * (1 - x^(3*k))/(1 - x^k)^4. 0
1, 5, 11, 24, 32, 61, 65, 109, 120, 172, 167, 279, 236, 343, 358, 470, 410, 630, 515, 762, 706, 865, 761, 1193, 933, 1216, 1174, 1497, 1220, 1850, 1397, 1959, 1762, 2098, 1882, 2739, 2000, 2629, 2470, 3188, 2462, 3614, 2711, 3723, 3438, 3871, 3245, 4939, 3594, 4749, 4246, 5214 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Inverse Moebius transform of centered triangular numbers (A005448).

LINKS

Table of n, a(n) for n=1..52.

FORMULA

G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^k/(1 - x^k).

a(n) = 3 * (sigma_2(n) - sigma_1(n))/2 + d(n).

MATHEMATICA

nmax = 52; CoefficientList[Series[Sum[x^k (1 - x^(3 k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Table[3 (DivisorSigma[2, n] - DivisorSigma[1, n])/2 + DivisorSigma[0, n], {n, 1, 52}]

PROG

(PARI) a(n)={sumdiv(n, d, 3*d*(d-1)/2 + 1)} \\ Andrew Howroyd, Aug 14 2019

(PARI) a(n)={3*(sigma(n, 2) - sigma(n))/2 + numdiv(n)} \\ Andrew Howroyd, Aug 14 2019

CROSSREFS

Cf. A000005, A000203, A001157, A005448, A007437, A059358.

Sequence in context: A059455 A095030 A065114 * A102171 A335153 A122926

Adjacent sequences:  A309727 A309728 A309729 * A309731 A309732 A309733

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Aug 14 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 16 09:13 EDT 2020. Contains 335784 sequences. (Running on oeis4.)