%I #34 May 08 2024 11:33:21
%S 0,0,0,1,6,28,114,432,1566,5517,19068,65044,219852,738316,2468028,
%T 8222805,27330858,90685224,300521622,994991716,3292117698,10887332473,
%U 35992718136,118958691528,393093822744,1298783453112,4290755845176,14174217683209,46821054068430,154655837126740
%N Convolve Fibonacci, Pell and bronze Fibonacci numbers.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-8,-6,8,6,1).
%F G.f.: -x^3/( (x^2+2*x-1) * (x^2+3*x-1) * (x^2+x-1) ) = A006190(x) * A000045(x) * A000129(x).
%F Conjecture: 2*a(n) = A117936(n,3).
%F 2*a(n) = A006190(n) + A000045(n) - 2*A000129(n). - _R. J. Mathar_, Mar 10 2023, typo corrected by Xiaoyuan Wang and _Greg Dresden_, May 08 2024
%p -x^3/( (x^2+2*x-1)*(x^2+3*x-1)*(x^2+x-1) ) ;
%p taylor(%,x=0,30) ;
%p gfun[seriestolist](%) ;
%Y Cf. A006684, A006190 (bronze Fibonacci numbers), A117936.
%K nonn,easy
%O 0,5
%A _R. J. Mathar_, Aug 16 2019