login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309685 Number of even parts appearing among the smallest parts of the partitions of n into 3 parts. 11
0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 35, 35, 40, 40, 45, 45, 51, 51, 57, 57, 63, 63, 70, 70, 77, 77, 84, 84, 92, 92, 100, 100, 108, 108, 117, 117, 126, 126, 135, 135, 145, 145, 155, 155, 165 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Table of n, a(n) for n=0..64.

Index entries for sequences related to partitions

Index entries for linear recurrences with constant coefficients, signature (1, 1, -1, 0, 0, 1, -1, -1, 1).

FORMULA

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} ((j-1) mod 2).

From Colin Barker, Aug 23 2019: (Start)

G.f.: x^6 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).

a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8.

(End)

a(n) = A001840(floor((n-4)/2)) for n>=2. - Joerg Arndt, Aug 23 2019

EXAMPLE

Figure 1: The partitions of n into 3 parts for n = 3, 4, ...

                                                          1+1+8

                                                   1+1+7  1+2+7

                                                   1+2+6  1+3+6

                                            1+1+6  1+3+5  1+4+5

                                     1+1+5  1+2+5  1+4+4  2+2+6

                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5

                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4

         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...

-----------------------------------------------------------------------

  n  |     3      4      5      6      7      8      9     10      ...

-----------------------------------------------------------------------

a(n) |     0      0      0      1      1      2      2      3      ...

-----------------------------------------------------------------------

MATHEMATICA

LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 0, 0, 0, 1, 1, 2}, 80] (* Wesley Ivan Hurt, Aug 30 2019 *)

CROSSREFS

Cf. A001840, A026923, A026927, A309683, A309684, A309686, A309687, A309688, A309689, A309690, A309692, A309694.

Sequence in context: A121260 A121261 A085885 * A309683 A283529 A064986

Adjacent sequences:  A309682 A309683 A309684 * A309686 A309687 A309688

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Aug 12 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 10:45 EST 2019. Contains 329751 sequences. (Running on oeis4.)