login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309683 Number of odd parts appearing among the smallest parts of the partitions of n into 3 parts. 11
0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 35, 35, 40, 40, 45, 45, 51, 51, 57, 57, 63, 63, 70, 70, 77, 77, 84, 84, 92, 92, 100, 100, 108, 108, 117, 117, 126, 126, 135, 135, 145, 145, 155, 155, 165, 165, 176 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..63.

Index entries for sequences related to partitions

Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,0,1,-1,-1,1).

FORMULA

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (j mod 2).

From Colin Barker, Aug 22 2019: (Start)

G.f.: x^3 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).

a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8.

(End)

EXAMPLE

Figure 1: The partitions of n into 3 parts for n = 3, 4, ...

                                                          1+1+8

                                                   1+1+7  1+2+7

                                                   1+2+6  1+3+6

                                            1+1+6  1+3+5  1+4+5

                                     1+1+5  1+2+5  1+4+4  2+2+6

                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5

                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4

         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...

-----------------------------------------------------------------------

  n  |     3      4      5      6      7      8      9     10      ...

-----------------------------------------------------------------------

a(n) |     1      1      2      2      3      3      5      5      ...

-----------------------------------------------------------------------

MATHEMATICA

Table[Sum[Sum[Mod[j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]

LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 1, 1, 2, 2, 3, 3}, 50] (* Wesley Ivan Hurt, Aug 28 2019 *)

CROSSREFS

Cf. A026923, A026927, A309684, A309685, A309686, A309687, A309688, A309689, A309690, A309692, A309694.

Sequence in context: A121261 A085885 A309685 * A283529 A064986 A029019

Adjacent sequences:  A309680 A309681 A309682 * A309684 A309685 A309686

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Aug 12 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 18:34 EST 2019. Contains 329925 sequences. (Running on oeis4.)