login
A309683
Number of odd parts appearing among the smallest parts of the partitions of n into 3 parts.
11
0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 35, 35, 40, 40, 45, 45, 51, 51, 57, 57, 63, 63, 70, 70, 77, 77, 84, 84, 92, 92, 100, 100, 108, 108, 117, 117, 126, 126, 135, 135, 145, 145, 155, 155, 165, 165, 176
OFFSET
0,6
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (j mod 2).
From Colin Barker, Aug 22 2019: (Start)
G.f.: x^3 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8.
(End)
EXAMPLE
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 1 1 2 2 3 3 5 5 ...
-----------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[Mod[j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 1, 1, 2, 2, 3, 3}, 50] (* Wesley Ivan Hurt, Aug 28 2019 *)
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 12 2019
STATUS
approved