login
A309648
Digits of the 10-adic integer (-17/9)^(1/3).
2
3, 8, 3, 1, 2, 9, 6, 6, 6, 3, 4, 7, 2, 1, 2, 7, 3, 2, 8, 8, 9, 6, 6, 7, 5, 4, 3, 4, 6, 3, 4, 6, 6, 6, 2, 4, 7, 5, 2, 4, 9, 7, 0, 9, 3, 2, 9, 1, 1, 3, 3, 2, 9, 8, 7, 5, 4, 6, 7, 1, 3, 0, 2, 6, 8, 3, 3, 0, 4, 9, 8, 3, 5, 3, 1, 9, 6, 1, 4, 0, 3, 8, 6, 4, 6, 2, 0, 2, 7, 6, 3, 3, 0, 9, 9, 9, 4, 6, 2, 2
OFFSET
0,1
LINKS
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 + 17) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.
EXAMPLE
3^3 == 7 (mod 10).
83^3 == 87 (mod 10^2).
383^3 == 887 (mod 10^3).
1383^3 == 8887 (mod 10^4).
21383^3 == 88887 (mod 10^5).
921383^3 == 888887 (mod 10^6).
PROG
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((-17/9+O(2^N))^(1/3), 2^N), Mod((-17/9+O(5^N))^(1/3), 5^N)))), N)
(Ruby)
def A309648(n)
ary = [3]
a = 3
n.times{|i|
b = (a + 3 * (9 * a ** 3 + 17)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A309648(100)
CROSSREFS
Sequence in context: A071209 A156227 A021727 * A021265 A115369 A084233
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 11 2019
STATUS
approved