login
A309644
Digits of the 10-adic integer (-43/9)^(1/3).
3
7, 9, 3, 1, 4, 9, 2, 8, 3, 0, 0, 0, 8, 2, 6, 1, 4, 3, 7, 0, 1, 8, 9, 0, 3, 1, 6, 9, 4, 8, 4, 8, 4, 2, 2, 8, 8, 4, 0, 0, 0, 0, 8, 7, 0, 0, 7, 8, 9, 6, 3, 0, 0, 4, 0, 5, 9, 4, 6, 9, 6, 9, 2, 0, 1, 8, 5, 3, 2, 0, 1, 2, 0, 5, 7, 9, 3, 3, 9, 4, 5, 6, 2, 0, 3, 1, 3, 5, 1, 4, 0, 5, 8, 2, 5, 7, 2, 6, 4, 9
OFFSET
0,1
LINKS
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 + 43) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.
EXAMPLE
7^3 == 3 (mod 10).
97^3 == 73 (mod 10^2).
397^3 == 773 (mod 10^3).
1397^3 == 7773 (mod 10^4).
41397^3 == 77773 (mod 10^5).
941397^3 == 777773 (mod 10^6).
PROG
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((-43/9+O(2^N))^(1/3), 2^N), Mod((-43/9+O(5^N))^(1/3), 5^N)))), N)
(Ruby)
def A309644(n)
ary = [7]
a = 7
n.times{|i|
b = (a + 3 * (9 * a ** 3 + 43)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A309644(100)
CROSSREFS
Sequence in context: A369235 A110793 A199290 * A001903 A011345 A201770
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 11 2019
STATUS
approved