login
A309641
Digits of the 10-adic integer (-11/3)^(1/3).
3
7, 6, 7, 7, 4, 1, 3, 1, 6, 8, 2, 6, 7, 3, 8, 9, 9, 8, 6, 7, 4, 6, 6, 4, 4, 4, 9, 1, 1, 0, 9, 0, 8, 2, 6, 7, 0, 5, 6, 0, 0, 1, 6, 6, 9, 8, 5, 7, 2, 3, 0, 4, 8, 4, 0, 6, 7, 4, 6, 2, 6, 8, 5, 1, 0, 2, 9, 8, 0, 8, 8, 5, 8, 5, 2, 5, 0, 9, 2, 2, 8, 7, 5, 0, 6, 5, 6, 1, 9, 1, 8, 1, 0, 1, 6, 4, 4, 8, 0, 7
OFFSET
0,1
LINKS
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 + 11) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.
EXAMPLE
7^3 == 3 (mod 10).
67^3 == 63 (mod 10^2).
767^3 == 663 (mod 10^3).
7767^3 == 6663 (mod 10^4).
47767^3 == 66663 (mod 10^5).
147767^3 == 666663 (mod 10^6).
PROG
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((-11/3+O(2^N))^(1/3), 2^N), Mod((-11/3+O(5^N))^(1/3), 5^N)))), N)
(Ruby)
def A309641(n)
ary = [7]
a = 7
n.times{|i|
b = (a + 9 * (3 * a ** 3 + 11)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A309641(100)
CROSSREFS
Sequence in context: A276792 A188943 A093349 * A020789 A153857 A093813
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 11 2019
STATUS
approved