

A309584


Numbers k with 2 zeros in a fundamental period of A000129 mod k.


10



3, 6, 9, 10, 11, 12, 15, 17, 18, 19, 21, 22, 26, 27, 30, 33, 34, 35, 36, 38, 39, 42, 43, 44, 45, 50, 51, 54, 55, 57, 58, 59, 60, 63, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 81, 83, 84, 85, 86, 87, 89, 90, 91, 93, 95, 97, 99, 102, 105, 106, 107, 108, 110
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers k such that A214027(k) = 2.
This sequence contains all numbers k such that 4 divides A214028(k). As a consequence, this sequence contains all numbers congruent to 3 modulo 8.
This sequence contains all odd numbers k such that 8 divides A175181(k).


LINKS

Table of n, a(n) for n=1..64.


PROG

(PARI) for(k=1, 100, if(A214027(k)==2, print1(k, ", ")))


CROSSREFS

Cf. A000129, A175181, A214027, A214028.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
 m=1  m=2  m=3
Primes p such that w(p) = 1  A112860*  A309580  A309586
Primes p such that w(p) = 2  A053027  A309581  A309587
Primes p such that w(p) = 4  A053028  A261580  A309588
Numbers k such that w(k) = 1  A053031  A309583  A309591
Numbers k such that w(k) = 2  A053030  this seq  A309592
Numbers k such that w(k) = 4  A053029  A309585  A309593
* and also A053032 U {2}
Sequence in context: A077856 A239977 A074499 * A081605 A293828 A110263
Adjacent sequences: A309581 A309582 A309583 * A309585 A309586 A309587


KEYWORD

nonn


AUTHOR

Jianing Song, Aug 10 2019


STATUS

approved



