This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309584 Numbers k with 2 zeros in a fundamental period of A000129 mod k. 10
 3, 6, 9, 10, 11, 12, 15, 17, 18, 19, 21, 22, 26, 27, 30, 33, 34, 35, 36, 38, 39, 42, 43, 44, 45, 50, 51, 54, 55, 57, 58, 59, 60, 63, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 81, 83, 84, 85, 86, 87, 89, 90, 91, 93, 95, 97, 99, 102, 105, 106, 107, 108, 110 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers k such that A214027(k) = 2. This sequence contains all numbers k such that 4 divides A214028(k). As a consequence, this sequence contains all numbers congruent to 3 modulo 8. This sequence contains all odd numbers k such that 8 divides A175181(k). LINKS PROG (PARI) for(k=1, 100, if(A214027(k)==2, print1(k, ", "))) CROSSREFS Cf. A000129, A175181, A214027, A214028. Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.                              |   m=1    |   m=2    |   m=3 Primes p such that w(p) = 1  | A112860* | A309580  | A309586 Primes p such that w(p) = 2  | A053027  | A309581  | A309587 Primes p such that w(p) = 4  | A053028  | A261580  | A309588 Numbers k such that w(k) = 1 | A053031  | A309583  | A309591 Numbers k such that w(k) = 2 | A053030  | this seq | A309592 Numbers k such that w(k) = 4 | A053029  | A309585  | A309593 * and also A053032 U {2} Sequence in context: A077856 A239977 A074499 * A081605 A293828 A110263 Adjacent sequences:  A309581 A309582 A309583 * A309585 A309586 A309587 KEYWORD nonn AUTHOR Jianing Song, Aug 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 14:54 EDT 2019. Contains 328345 sequences. (Running on oeis4.)