login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309584 Numbers k with 2 zeros in a fundamental period of A000129 mod k. 10
3, 6, 9, 10, 11, 12, 15, 17, 18, 19, 21, 22, 26, 27, 30, 33, 34, 35, 36, 38, 39, 42, 43, 44, 45, 50, 51, 54, 55, 57, 58, 59, 60, 63, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 81, 83, 84, 85, 86, 87, 89, 90, 91, 93, 95, 97, 99, 102, 105, 106, 107, 108, 110 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers k such that A214027(k) = 2.

This sequence contains all numbers k such that 4 divides A214028(k). As a consequence, this sequence contains all numbers congruent to 3 modulo 8.

This sequence contains all odd numbers k such that 8 divides A175181(k).

LINKS

Table of n, a(n) for n=1..64.

PROG

(PARI) for(k=1, 100, if(A214027(k)==2, print1(k, ", ")))

CROSSREFS

Cf. A000129, A175181, A214027, A214028.

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.

                             |   m=1    |   m=2    |   m=3

Primes p such that w(p) = 1  | A112860* | A309580  | A309586

Primes p such that w(p) = 2  | A053027  | A309581  | A309587

Primes p such that w(p) = 4  | A053028  | A261580  | A309588

Numbers k such that w(k) = 1 | A053031  | A309583  | A309591

Numbers k such that w(k) = 2 | A053030  | this seq | A309592

Numbers k such that w(k) = 4 | A053029  | A309585  | A309593

* and also A053032 U {2}

Sequence in context: A077856 A239977 A074499 * A081605 A293828 A110263

Adjacent sequences:  A309581 A309582 A309583 * A309585 A309586 A309587

KEYWORD

nonn

AUTHOR

Jianing Song, Aug 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 14:54 EDT 2019. Contains 328345 sequences. (Running on oeis4.)