login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309519
Sum of the even parts in the partitions of n into 4 parts.
0
0, 0, 0, 0, 0, 2, 4, 12, 18, 28, 40, 62, 80, 120, 154, 208, 260, 334, 408, 522, 620, 764, 902, 1090, 1270, 1512, 1742, 2042, 2324, 2694, 3050, 3510, 3944, 4476, 4998, 5640, 6252, 7020, 7752, 8634, 9490, 10502, 11494, 12684, 13816, 15160, 16468, 17996, 19484
OFFSET
0,6
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (i * ((i-1) mod 2) + j * ((j-1) mod 2) + k * ((k-1) mod 2) + (n-i-j-k) * ((n-i-j-k-1) mod 2)).
EXAMPLE
Figure 1: The partitions of n into 4 parts for n = 8, 9, ...
1+1+1+9
1+1+2+8
1+1+3+7
1+1+4+6
1+1+1+8 1+1+5+5
1+1+2+7 1+2+2+7
1+1+1+7 1+1+3+6 1+2+3+6
1+1+2+6 1+1+4+5 1+2+4+5
1+1+3+5 1+2+2+6 1+3+3+5
1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4
1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6
1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5
1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4
1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4
2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3
--------------------------------------------------------------------------
n | 8 9 10 11 12 ...
--------------------------------------------------------------------------
a(n) | 18 28 40 62 80 ...
--------------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 08 2019
MATHEMATICA
Table[Sum[Sum[Sum[(i * Mod[i - 1, 2] + j * Mod[j - 1, 2] + k * Mod[k - 1, 2] + (n - i - j - k) * Mod[n - i - j - k - 1, 2]), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 80}]
PROG
(PARI) a(n) = sum(k=1, n\4, sum(j=k, (n-k)\3, sum(i=j, (n-j-k)\2, (i * ((i-1) % 2) + j * ((j-1) % 2) + k * ((k-1) % 2) + (n-i-j-k) * ((n-i-j-k-1) % 2))))); \\ Michel Marcus, Sep 08 2019
CROSSREFS
Sequence in context: A064361 A303403 A064407 * A198392 A052289 A309547
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 05 2019
EXTENSIONS
Data corrected by Wesley Ivan Hurt, Sep 08 2019
STATUS
approved