OFFSET
0,5
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (i * ((i-1) mod 2) + j * ((j-1) mod 2) + (n-i-j) * ((n-i-j-1) mod 2)).
Conjectures from Colin Barker, Aug 06 2019: (Start)
G.f.: 2*x^4*(1 + x + 5*x^2 + 9*x^4 + 9*x^6 + 7*x^8 + 4*x^10 - x^11 + x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + 3*a(n-6) - 3*a(n-7) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14) + a(n-15) + a(n-16) - a(n-17) + a(n-18) - a(n-19) for n>18.
(End)
EXAMPLE
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 0 2 4 12 10 22 26 46 ...
-----------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[i * Mod[i - 1, 2] + j * Mod[j - 1, 2] + (n - i - j) * Mod[n - i - j - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 100}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 05 2019
STATUS
approved