login
A309480
Sum of the squarefree parts of the partitions of n into 5 parts.
8
0, 0, 0, 0, 0, 5, 6, 14, 20, 41, 62, 94, 124, 185, 245, 344, 425, 582, 736, 953, 1169, 1497, 1805, 2256, 2670, 3292, 3876, 4671, 5420, 6467, 7486, 8772, 10040, 11697, 13327, 15356, 17344, 19864, 22357, 25386, 28377, 32102, 35784, 40180, 44549, 49865, 55139
OFFSET
0,6
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-1)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} (i * mu(i)^2 + j * mu(j)^2 + k * mu(k)^2 + l * mu(l)^2 + (n-i-j-k-l) * mu(n-i-j-k-l)^2), where mu is the Möbius function (A008683).
EXAMPLE
The partitions of n into 5 parts for n = 10, 11, ..
1+1+1+1+10
1+1+1+2+9
1+1+1+3+8
1+1+1+4+7
1+1+1+5+6
1+1+1+1+9 1+1+2+2+8
1+1+1+2+8 1+1+2+3+7
1+1+1+3+7 1+1+2+4+6
1+1+1+4+6 1+1+2+5+5
1+1+1+5+5 1+1+3+3+6
1+1+1+1+8 1+1+2+2+7 1+1+3+4+5
1+1+1+2+7 1+1+2+3+6 1+1+4+4+4
1+1+1+3+6 1+1+2+4+5 1+2+2+2+7
1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6
1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5
1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5
1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4
1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4
1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6
1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5
1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4
1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4
2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3
--------------------------------------------------------------------------
n | 10 11 12 13 14 ...
--------------------------------------------------------------------------
a(n) | 62 94 124 185 245 ...
--------------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 12 2019
MATHEMATICA
Table[Sum[Sum[Sum[Sum[i * MoebiusMu[i]^2 + j * MoebiusMu[j]^2 + k * MoebiusMu[k]^2 + l * MoebiusMu[l]^2 + (n - i - j - k - l) * MoebiusMu[n - i - j - k - l]^2, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 04 2019
STATUS
approved