This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309442 Minimum number of colors needed to color the cells of the six regular convex polychora such that no two cells with a common face share the same color (in the order 5-cell, 8-cell, 16-cell, 24-cell, 120-cell, 600-cell). 0
 5, 4, 2, 3, 5, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Here, cells are 3-dimensional polyhedra, and faces are 2-dimensional polygons. The sequence is the 4-dimensional analog of A244951. The sequence is also the minimum number of colors needed to color the vertices of the six regular convex polychora such that no two vertices with a common edge share the same color (in the order 5-cell, 16-cell, 8-cell, 24-cell, 600-cell, 120-cell). LINKS EXAMPLE a(1) = 5, since in the 5-cell, each cell has a common face with every other cell (analogous to the tetrahedron, where each face has a common edge with every other face). a(2) = 4, since in the 8-cell, each cell has a common face with every other cell except its "opposite" cell (analogous to the cube, where each face has a common edge with every other face except its opposite face). a(3) = 2, since the 16-cell's dual graph has no odd-edge cycles (analogous to the octahedron's dual graph having no odd-edge cycles). a(4) = 3, since the 24-cell has at least one 3-color solution, and its dual graph has a 3-vertex subgraph with no 2-color solution. a(5) = 5, since the 120-cell has at least one 5-color solution, and its dual graph has a 30-vertex subgraph with no 4-color solution. a(6) = 3, since the 600-cell has at least one 3-color solution, and its dual graph has a 5-vertex subgraph with no 2-color solution. CROSSREFS Cf. A244951, A273509. Sequence in context: A081749 A074825 A225063 * A213205 A094778 A260849 Adjacent sequences:  A309439 A309440 A309441 * A309443 A309444 A309445 KEYWORD nonn,fini,full AUTHOR Sangeet Paul, Aug 03 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 00:16 EST 2019. Contains 329812 sequences. (Running on oeis4.)