The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309440 The number of digits of the greatest product from addends that sum up to 10^n. 0
 1, 2, 16, 160, 1591, 15905, 159041, 1590405, 15904042, 159040419, 1590404183, 15904041824, 159040418240, 1590404182399, 15904041823989, 159040418239888, 1590404182398875, 15904041823988748, 159040418239887480, 1590404182398874791, 15904041823988747910, 159040418239887479099 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) = 1 + floor(log_10(36) + 10*log_10(27)*R_(n-1)), R_k being the k-th repunit, i.e., 111...111 with only digit 1 appearing k times. EXAMPLE The greatest product of numbers that sum up to 10 is 2*2*3*3 = 36 which has 2 digits. Thus a(1) = 2. The greatest product of numbers that sum up to 100 is 2*2*3^(32) ~ 7.4*10^15 which has 16 digits. Hence a(2) = 16. The greatest product of numbers that sum up to 1000 is 2*2*3^(332) ~ 1.0*10^159 which has 160 digits. Therefore a(3) = 160. PROG (PARI) a(n) = 1 + floor(log(4)/log(10) + ((10^n-1)/3-1)*log(3)/log(10)); \\ Jinyuan Wang, Aug 03 2019 CROSSREFS Cf. A000792. Sequence in context: A009518 A052674 A259706 * A226012 A011552 A326362 Adjacent sequences:  A309437 A309438 A309439 * A309441 A309442 A309443 KEYWORD nonn,base AUTHOR Lekraj Beedassy, Aug 03 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 4 05:34 EDT 2020. Contains 333212 sequences. (Running on oeis4.)