login
A309381
Lucky primes k such that k+6 is also a lucky prime.
1
7, 31, 37, 67, 73, 613, 991, 1087, 1117, 2467, 3301, 3307, 3607, 4561, 4987, 4993, 6367, 6373, 8263, 8641, 9643, 10903, 11827, 11953, 12373, 12547, 15187, 15901, 17047, 18043, 19603, 20353, 21751, 23671, 25147, 28837, 31033, 31231, 37957, 38707, 38917, 43201, 44383, 46021, 49627
OFFSET
1,1
COMMENTS
A031157(k) for k such that A309334(k)=6.
The minimum gap between lucky primes (after the first) is 6.
LINKS
EXAMPLE
37 and 37+6=43 are both lucky primes, so 37 is in the sequence.
MAPLE
N:= 10^5: # for terms <= N
L:= [seq(i, i=1..N+6, 2)]:
for n from 2 while n < nops(L) do
r:= L[n];
L:= subsop(seq(r*i=NULL, i=1..nops(L)/r), L);
od:
L:= convert(select(isprime, L), set):
A:= L intersect map(`-`, L, 6):
sort(convert(A, list));
CROSSREFS
Sequence in context: A238664 A272201 A325423 * A276741 A000696 A171733
KEYWORD
nonn
AUTHOR
Robert Israel, Jul 26 2019
STATUS
approved