login
a(n) = Sum_{k=1..n} k * A088370(n,k).
2

%I #15 Sep 15 2022 04:08:39

%S 0,1,5,13,29,48,82,122,186,239,327,419,559,674,852,1028,1284,1453,

%T 1721,1977,2353,2636,3062,3462,4030,4403,4971,5495,6243,6790,7592,

%U 8328,9352,9945,10861,11685,12869,13704,14938,16050,17602,18567,20015,21307,23127,24410

%N a(n) = Sum_{k=1..n} k * A088370(n,k).

%H Alois P. Heinz, <a href="/A309371/b309371.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = Sum_{k=1..n} k * A088370(n,k).

%F A000292(n) <= a(n) <= A000330(n).

%p b:= proc(n) option remember; `if`(n<2, n, (h->

%p [map(x-> 2*x-1, [b(n-h)])[],

%p map(x-> 2*x, [b(h)])[]][])(iquo(n, 2)))

%p end:

%p a:= n-> (l-> add(i*l[i], i=1..n))([b(n)]):

%p seq(a(n), n=0..50);

%t T[n_] := T[n] = If[n == 1, {1}, Join[q = Quotient[n, 2];

%t 2*T[n - q] - 1, 2*T[q]]];

%t a[n_] := Sum[k*T[n][[k]], {k, 1, n}];

%t Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Sep 15 2022, after _Alois P. Heinz_ in A088370 *)

%Y Cf. A000292, A000330, A088370.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jul 25 2019