The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309229 Square array read by upwards antidiagonals: T(n,k) = Sum_{i=1..n} A191898(i,k). 6
 1, 2, 1, 3, 0, 1, 4, 1, 2, 1, 5, 0, 0, 0, 1, 6, 1, 1, 1, 2, 1, 7, 0, 2, 0, 3, 0, 1, 8, 1, 0, 1, 4, -2, 2, 1, 9, 0, 1, 0, 0, -3, 3, 0, 1, 10, 1, 2, 1, 1, -2, 4, 1, 2, 1, 11, 0, 0, 0, 2, 0, 5, 0, 0, 0, 1, 12, 1, 1, 1, 3, 1, 6, 1, 1, 1, 2, 1, 13, 0, 2, 0, 4, 0, 0, 0, 2, 0, 3, 0, 1, 14, 1, 0, 1, 0, -2, 1, 1, 0, -4, 4, -2, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS log(A003418(n)) = Sum_{k>=1} (T(n, k)/k - 1/k). Partial sums of the symmetric matrix A191898. - Mats Granvik, Apr 12 2020 1 + Sum_{k=1..2*n} sign((sign(n+Sum_{j=2..k}-|T(n,j)|)+1)) appears to be asymptotic to sqrt(8*n). - Mats Granvik, Jun 08 2020 LINKS Mats Granvik, Mathematica MatrixPlot of 1000 times 1000 size matrix Mats Granvik, Mathematica program for the recurrence Mathematics Stack Exchange, Do these series converge to the von Mangoldt function? FORMULA Recurrence: T(n, 1) = [n >= 1]*n; T(1, k) = 1; T(n, k) = [n > k]*T(n - k, k) + [n <= k](Sum_{i=0..n-1} T(n - 1, k - i) - Sum_{i=1..n-1} T(n, k - i)). - Mats Granvik, Jun 19 2020 T(n,k) = Sum_{i=1..n} A191898(i,k). EXAMPLE 1, 1, 1, 1, 1,  1, 1, 1, 1,  1,  1,  1,  1,  1, ...    2, 0, 2, 0, 2,  0, 2, 0, 2,  0,  2,  0,  2,  0, ...    3, 1, 0, 1, 3, -2, 3, 1, 0,  1,  3, -2,  3,  1, ...    4, 0, 1, 0, 4, -3, 4, 0, 1,  0,  4, -3,  4,  0, ...    5, 1, 2, 1, 0, -2, 5, 1, 2, -4,  5, -2,  5,  1, ...    6, 0, 0, 0, 1,  0, 6, 0, 0, -5,  6,  0,  6,  0, ...    7, 1, 1, 1, 2,  1, 0, 1, 1, -4,  7,  1,  7, -6, ...    8, 0, 2, 0, 3,  0, 1, 0, 2, -5,  8,  0,  8, -7, ...    9, 1, 0, 1, 4, -2, 2, 1, 0, -4,  9, -2,  9, -6, ...   10, 0, 1, 0, 0, -3, 3, 0, 1,  0, 10, -3, 10, -7, ...   11, 1, 2, 1, 1, -2, 4, 1, 2,  1,  0, -2, 11, -6, ...   12, 0, 0, 0, 2,  0, 5, 0, 0,  0,  1,  0, 12, -7, ...   13, 1, 1, 1, 3,  1, 6, 1, 1,  1,  2,  1,  0, -6, ...   14, 0, 2, 0, 4,  0, 0, 0, 2,  0,  3,  0,  1,  0, ...   ... MATHEMATICA f[n_] := DivisorSum[n, MoebiusMu[#] # &]; nn = 14; A = Accumulate[Table[Table[f[GCD[n, k]], {k, 1, nn}], {n, 1, nn}]]; Flatten[Table[Table[A[[n - k + 1, k]], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Jun 09 2020 *) CROSSREFS Cf. A003418, A191898. Sequence in context: A127094 A221642 A158906 * A143239 A158951 A126988 Adjacent sequences:  A309226 A309227 A309228 * A309230 A309231 A309232 KEYWORD tabl,sign AUTHOR Mats Granvik, Aug 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 02:37 EST 2021. Contains 340429 sequences. (Running on oeis4.)