The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309228 a(n) is the greatest possible height of a binary tree where all nodes hold positive squares and all interior nodes also equal the sum of their two children and the root node has value n^2. 1
 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 3, 1, 3, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 3, 3, 1, 2, 1, 1, 3, 1, 2, 3, 1, 1, 1, 4, 1, 1, 3, 1, 2, 1, 1, 3, 3, 3, 1, 1, 3, 1, 2, 1, 3, 1, 1, 4, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS The sequence is unbounded and for any k > 0, A309167(k) is the least n such that a(n) = k. LINKS FORMULA a(n) = 1 iff n belongs to A004144. a(A309167(n)) = n. If n^2 = u^2 + v^2 with u > v > 0, then a(n) >= 1 + max(a(u), a(v)). EXAMPLE a(1) = 1:               1^2                | a(5) = 2:            3^2    4^2             \     /              \   /               5^2                | a(13) = 3:           3^2    4^2            \     /             \   /              5^2    12^2               \      /                \    /                 13^2                   | PROG (PARI) a = vector(87, n, 1); for (n=1, #a, for (u=1, n-1, if (issquare(v2=n^2-u^2), a[n]=max(a[n], 1+max(a[u], a[sqrtint(v2)])))); print1 (a[n]", ")) CROSSREFS Cf. A004144, A309167. Sequence in context: A084115 A284154 A080028 * A309778 A143223 A063993 Adjacent sequences:  A309225 A309226 A309227 * A309229 A309230 A309231 KEYWORD nonn AUTHOR Rémy Sigrist, Jul 16 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 08:18 EST 2020. Contains 331081 sequences. (Running on oeis4.)