%I #54 Jan 09 2024 11:03:13
%S 1,0,0,1,1,0,5,23,18865
%N Number of main classes of extended self-orthogonal diagonal Latin squares of order n.
%C A self-orthogonal diagonal Latin square (SODLS) is a diagonal Latin square orthogonal to its transpose. An extended self-orthogonal diagonal Latin square (ESODLS) is a diagonal Latin square that has an orthogonal diagonal Latin square from the same main class. SODLS is a special case of ESODLS.
%C A333366(n) <= A329685(n) <= a(n) <= A330391(n). - _Eduard I. Vatutin_, Jun 07 2020
%C a(10) >= 33240. - _Eduard I. Vatutin_, Jul 09 2020
%H E. I. Vatutin, <a href="https://vk.com/wall162891802_924">Discussion about properties of diagonal Latin squares</a> (in Russian)
%H E. I. Vatutin, <a href="https://vk.com/wall162891802_1134">About the lower bound of number of ESODLS of order 10</a> (in RUssian).
%H E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_esodls_1_to_8.zip">List of all main classes of extended self-orthogonal diagonal Latin squares of orders 1-8</a>.
%H E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_esodls_9.zip">List of all main classes of extended self-orthogonal diagonal Latin squares of order 9</a>.
%H E. Vatutin and A. Belyshev, <a href="https://www.springerprofessional.de/en/enumerating-the-orthogonal-diagonal-latin-squares-of-small-order/18659992">Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality</a>, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.
%H Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1485">First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian).
%H Eduard Vatutin and Oleg Zaikin, <a href="https://doi.org/10.1007/978-3-031-49435-2_2">Classification of Cells Mapping Schemes Related to Orthogonal Diagonal Latin Squares of Small Order</a>, Supercomputing, Russian Supercomputing Days (RuSCDays 2023) Rev. Selected Papers Part II, LCNS Vol. 14389, Springer, Cham, 21-34.
%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>
%e The diagonal Latin square
%e 0 1 2 3 4 5 6 7 8 9
%e 1 2 0 4 5 7 9 8 6 3
%e 5 0 1 6 3 9 8 2 4 7
%e 9 3 5 8 2 1 7 4 0 6
%e 4 6 3 5 7 8 0 9 2 1
%e 8 4 6 9 1 3 2 5 7 0
%e 7 8 9 0 6 4 5 1 3 2
%e 2 9 4 7 8 0 3 6 1 5
%e 6 5 7 1 0 2 4 3 9 8
%e 3 7 8 2 9 6 1 0 5 4
%e has the orthogonal diagonal Latin square
%e 0 1 2 3 4 5 6 7 8 9
%e 3 5 9 8 6 2 0 1 4 7
%e 4 3 8 7 2 1 9 0 5 6
%e 6 9 3 4 8 0 1 2 7 5
%e 7 2 0 1 9 3 5 8 6 4
%e 2 0 1 5 7 6 4 9 3 8
%e 8 6 4 2 0 9 7 5 1 3
%e 1 7 6 0 5 4 8 3 9 2
%e 9 8 5 6 1 7 3 4 2 0
%e 5 4 7 9 3 8 2 6 0 1
%e from the same main class.
%Y Cf. A287761, A333366, A329685, A330391.
%K nonn,more,hard
%O 1,7
%A _Eduard I. Vatutin_, Aug 09 2019
%E a(9) added by _Eduard I. Vatutin_, Dec 08 2020