%I #17 Nov 04 2019 19:33:32
%S 1,1,2,3,5,7,11,15,22,29,40,51,67,82,105,125,154,180,218,250,295,334,
%T 390,436,502,553,630,694,780,849,950,1027,1138,1230,1355,1447,1590,
%U 1694,1846,1971,2133,2257,2445,2579,2776,2932,3142,3298,3539,3702,3941,4139
%N Number of partitions of n avoiding the partition (4,3,2).
%C We say a partition alpha contains mu provided that one can delete rows and columns from (the Ferrers board of) alpha and then top/right justify to obtain mu. If this is not possible then we say alpha avoids mu. For example, the only partitions avoiding (2,1) are those whose Ferrers boards are rectangles.
%H Jonathan Bloom, Nathan McNew, <a href="https://arxiv.org/abs/1908.03953">Counting pattern-avoiding integer partitions</a>, arXiv:1908.03953 [math.CO], 2019.
%H J. Bloom and D. Saracino <a href="https://doi.org/10.1016/j.ejc.2018.04.002">Rook and Wilf equivalence of integer partitions</a>, European J. Combin., 76 (2018), 199-207.
%H J. Bloom and D. Saracino <a href="https://doi.org/10.1016/j.ejc.2018.08.006">On Criteria for rook equivalence of Ferrers boards</a>, European J. Combin., 71 (2018), 246-267.
%Y Cf. A309097, A309098, A309099, A309058.
%K nonn
%O 0,3
%A _Jonathan S. Bloom_, Jul 16 2019
%E More terms from _Alois P. Heinz_, Jul 18 2019