

A309194


Number of partitions of n avoiding the partition (4,3,2).


0



1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 51, 67, 82, 105, 125, 154, 180, 218, 250, 295, 334, 390, 436, 502, 553, 630, 694, 780, 849, 950, 1027, 1138, 1230, 1355, 1447, 1590, 1694, 1846, 1971, 2133, 2257, 2445, 2579, 2776, 2932, 3142, 3298, 3539, 3702, 3941, 4139
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

We say a partition alpha contains mu provided that one can delete rows and columns from (the Ferrers board of) alpha and then top/right justify to obtain mu. If this is not possible then we say alpha avoids mu. For example, the only partitions avoiding (2,1) are those whose Ferrers boards are rectangles.


LINKS

Table of n, a(n) for n=0..51.
Jonathan Bloom, Nathan McNew, Counting patternavoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
J. Bloom and D. Saracino Rook and Wilf equivalence of integer partitions, European J. Combin., 76 (2018), 199207.
J. Bloom and D. Saracino On Criteria for rook equivalence of Ferrers boards, European J. Combin., 71 (2018), 246267.


CROSSREFS

Cf. A309097, A309098, A309099, A309058.
Sequence in context: A242695 A319473 A085894 * A319474 A218508 A026814
Adjacent sequences: A309191 A309192 A309193 * A309195 A309196 A309197


KEYWORD

nonn


AUTHOR

Jonathan S. Bloom, Jul 16 2019


EXTENSIONS

More terms from Alois P. Heinz, Jul 18 2019


STATUS

approved



