login
A309189
(1/10) times the number of n-member subsets of [10n] whose elements sum to a multiple of n.
2
1, 9, 136, 2289, 42376, 834336, 17125354, 362345361, 7847250409, 173103073384, 3875837737520, 87857163416064, 2012268157890524, 46497242493163450, 1082614775186919136, 25374686712458407441, 598217593341171422090, 14176230568946364963825
OFFSET
1,2
COMMENTS
Also (1/9) times the number of n-member subsets of [10n-1] whose elements sum to a multiple of n.
LINKS
FORMULA
a(n) = 1/(10n) * Sum_{d|n} binomial(10d,d)*(-1)^(n+d)*phi(n/d).
MAPLE
with(numtheory):
a:= n-> add(binomial(10*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(10*n):
seq(a(n), n=1..25);
PROG
(PARI) a(n) = 1/(10*n) * sumdiv(n, d, binomial(10*d, d)*(-1)^(n+d)*eulerphi(n/d)); \\ Michel Marcus, Jul 20 2019
CROSSREFS
Column k=10 of A309148.
Sequence in context: A052137 A003376 A253879 * A374614 A231757 A156975
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 15 2019
STATUS
approved