login
A309174
E.g.f. A(x) satisfies: A(x) = (1/(1 - x)) * Product_{k>=2} A(x^k)^(1/k).
1
1, 1, 3, 11, 65, 369, 3139, 24667, 268449, 2777345, 34932131, 432114891, 6790407073, 97969389361, 1671204338595, 28382893729499, 557174580764609, 10512263160373377, 228918738980395459, 4817409763554888715, 115117419384636141441, 2688602544800222293361
OFFSET
0,3
FORMULA
E.g.f.: Product_{k>=1} 1/(1 - x^k)^(A074206(k)/k).
MATHEMATICA
terms = 21; A[_] = 1; Do[A[x_] = 1/(1 - x) Product[A[x^k]^(1/k), {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] Range[0, terms]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 15 2019
STATUS
approved