login
Least nonnegative integer k such that the rank of the elliptic curve y^2 = x^3 + (4*k^2 + 12*k - 3)*x^2 + 32*(k+3)*x is n.
3

%I #11 Jul 15 2019 15:38:24

%S 0,4,34,424

%N Least nonnegative integer k such that the rank of the elliptic curve y^2 = x^3 + (4*k^2 + 12*k - 3)*x^2 + 32*(k+3)*x is n.

%H Andrew Bremner, Allan Macleod, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_43_from29to41.pdf">An unusual cubic representation problem</a>, Annales Mathematicae et Informaticae, 43(2014), pp.29-41. (See Section 3.)

%o (PARI) {a(n) = my(k=0); while(ellanalyticrank(ellinit([0, 4*k^2+12*k-3, 0, 32*(k+3), 0]))[1]<>n, k++); k}

%Y Cf. A309168, A309178.

%K nonn,more

%O 0,2

%A _Seiichi Manyama_, Jul 15 2019