

A309170


Least nonnegative integer k such that the rank of the elliptic curve y^2 = x^3 + (4*k^2 + 12*k  3)*x^2 + 32*(k+3)*x is n.


2




OFFSET

0,2


LINKS

Table of n, a(n) for n=0..3.
Andrew Bremner, Allan Macleod, An unusual cubic representation problem, Annales Mathematicae et Informaticae, 43(2014), pp.2941. (See Section 3.)


PROG

(PARI) {a(n) = my(k=0); while(ellanalyticrank(ellinit([0, 4*k^2+12*k3, 0, 32*(k+3), 0]))[1]<>n, k++); k}


CROSSREFS

Cf. A309168, A309178.
Sequence in context: A158839 A236964 A145349 * A052630 A071213 A052629
Adjacent sequences: A309167 A309168 A309169 * A309171 A309172 A309173


KEYWORD

nonn,more


AUTHOR

Seiichi Manyama, Jul 15 2019


STATUS

approved



