

A309145


Numbers k for which rank of the elliptic curve y^2=x^3+(k^2+6*k3)*x^216*k*x is 2.


0



28, 52, 59, 70, 76, 101, 103, 108, 115, 122, 130, 139, 148, 164, 172, 180, 181, 190, 199, 208, 210, 220, 222, 223, 228, 268, 270, 284, 314, 316, 327, 328, 339, 340, 364, 376, 388, 398, 403, 420, 427, 430, 436, 443, 446, 448, 456, 457, 460, 480, 487, 490, 504, 521, 532, 540
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..56.
Allan J. MacLeod, Knight's Problem


FORMULA

A309144(a(n)) = 2.


PROG

(PARI) for(k=1, 1e3, if(ellanalyticrank(ellinit([0, k^2+6*k3, 0, 16*k, 0]))[1]==2, print1(k", ")))


CROSSREFS

Cf. A309144.
Sequence in context: A046419 A063770 A161923 * A039772 A291855 A181792
Adjacent sequences: A309142 A309143 A309144 * A309146 A309147 A309148


KEYWORD

nonn


AUTHOR

Seiichi Manyama, Jul 14 2019


STATUS

approved



