login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309087 a(n) = Sum_{k >= 0} floor(n^k / k!). 3
1, 2, 6, 18, 50, 143, 397, 1088, 2973, 8093, 22014, 59861, 162742, 442396, 1202589, 3268996, 8886090, 24154933, 65659949, 178482278, 485165168, 1318815708, 3584912818, 9744803414, 26489122097, 72004899306, 195729609397, 532048240570, 1446257064252 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence is inspired by the Maclaurin series for the exponential function.

The series in the name is well defined; for any n > 0, only the first A065027(n) terms are different from zero.

LINKS

Table of n, a(n) for n=0..28.

Wikipedia, Taylor series: Exponential function

FORMULA

a(n) ~ exp(n) as n tends to infinity.

a(n) <= A000149(n).

a(n) = A309104(n) + A309105(n).

EXAMPLE

For n = 3:

- we have:

  k  floor(3^k / k!)

  -  ---------------

  0                1

  1                3

  2                4

  3                4

  4                3

  5                2

  6                1

  >=7              0

- hence a(3) = 1 + 3 + 4 + 4 + 3 + 2 + 1 = 18.

PROG

(PARI) a(n) = { my (v=0, d=1); for (k=1, oo, if (d<1, return (v), v += floor(d); d *= n/k)) }

CROSSREFS

See A309103, A309104, A309105 for similar sequences.

Cf. A000149, A065027.

Sequence in context: A180282 A081154 A002900 * A199770 A204322 A196593

Adjacent sequences:  A309084 A309085 A309086 * A309088 A309089 A309090

KEYWORD

nonn

AUTHOR

Rémy Sigrist, Jul 11 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 18:08 EDT 2019. Contains 328319 sequences. (Running on oeis4.)