This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309087 a(n) = Sum_{k >= 0} floor(n^k / k!). 3
 1, 2, 6, 18, 50, 143, 397, 1088, 2973, 8093, 22014, 59861, 162742, 442396, 1202589, 3268996, 8886090, 24154933, 65659949, 178482278, 485165168, 1318815708, 3584912818, 9744803414, 26489122097, 72004899306, 195729609397, 532048240570, 1446257064252 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence is inspired by the Maclaurin series for the exponential function. The series in the name is well defined; for any n > 0, only the first A065027(n) terms are different from zero. LINKS Wikipedia, Taylor series: Exponential function FORMULA a(n) ~ exp(n) as n tends to infinity. a(n) <= A000149(n). a(n) = A309104(n) + A309105(n). EXAMPLE For n = 3: - we have:   k  floor(3^k / k!)   -  ---------------   0                1   1                3   2                4   3                4   4                3   5                2   6                1   >=7              0 - hence a(3) = 1 + 3 + 4 + 4 + 3 + 2 + 1 = 18. PROG (PARI) a(n) = { my (v=0, d=1); for (k=1, oo, if (d<1, return (v), v += floor(d); d *= n/k)) } CROSSREFS See A309103, A309104, A309105 for similar sequences. Cf. A000149, A065027. Sequence in context: A180282 A081154 A002900 * A199770 A204322 A196593 Adjacent sequences:  A309084 A309085 A309086 * A309088 A309089 A309090 KEYWORD nonn AUTHOR Rémy Sigrist, Jul 11 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 18:08 EDT 2019. Contains 328319 sequences. (Running on oeis4.)