%I #23 Nov 27 2020 13:21:00
%S 0,1,2,3,4,5,4,5,6,7,8,9,8,9,10,11,10,9,10,11,12,13,14,13,14,15,16,15,
%T 16,17,18,17,16,17,18,17,16,15,16,17,18,17,16,17,18,19,20,21,20,21,22
%N Langton's ant on a snub square tiling: number of black cells after n moves of the ant when starting on a square.
%C First differs from A276073 at n = 16.
%C On a white square, turn 90 degrees right, flip the color of the tile, then move forward one unit.
%C On a white triangle, turn 60 degrees right, flip the color of the tile, then move forward one unit.
%C On a black square, turn 90 degrees left, flip the color of the tile, then move forward one unit.
%C On a black triangle, turn 60 degrees left, flip the color of the tile, then move forward one unit.
%H Lars Blomberg, <a href="/A309064/b309064.txt">Table of n, a(n) for n = 0..10000</a>
%H Lars Blomberg, <a href="/A309064/a309064.png">The state for n=104000, when 872 cells are set</a>
%H Lars Blomberg, <a href="/A309064/a309064_2.mp4">Animation illustrating n=1-3000</a>
%H Lars Blomberg, <a href="/A309064/a309064_1.mp4">Animation illustrating the transition from "chaos" to "avenue", n=96300-99608</a>
%H Felix Fröhlich, <a href="/A309064/a309064.pdf">Illustration of iterations 0-50 of the ant</a>, 2019.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Langton%27s_ant">Langton's ant</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Snub_square_tiling">Snub square tiling</a>
%F a(n+1025) = a(n) + 25 for n > 96420. _Lars Blomberg_, Aug 15 2019
%e See illustrations in Fröhlich, 2019.
%Y Cf. A255938, A269757, A276073, A308590, A308937, A308973, A326167, A326352.
%K nonn
%O 0,3
%A _Felix Fröhlich_, Jul 10 2019