login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309049 Number T(n,k) of (binary) max-heaps on n elements from the set {0,1} containing exactly k 0's; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 18
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 4, 2, 1, 1, 1, 4, 6, 6, 5, 2, 1, 1, 1, 4, 7, 8, 7, 5, 2, 1, 1, 1, 5, 10, 12, 11, 8, 5, 2, 1, 1, 1, 5, 11, 16, 17, 13, 9, 5, 2, 1, 1, 1, 6, 15, 23, 27, 24, 16, 10, 5, 2, 1, 1, 1, 6, 16, 27, 34, 34, 27, 18, 11, 5, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Also the number T(n,k) of (binary) min-heaps on n elements from the set {0,1} containing exactly k 1's.

The sequence of column k satisfies a linear recurrence with constant coefficients of order A063915(k).

LINKS

Alois P. Heinz, Rows n = 0..200, flattened

Eric Weisstein's World of Mathematics, Heap

Wikipedia, Binary heap

FORMULA

Sum_{k=0..n} k * T(n,k) = A309051(n).

Sum_{k=0..n} (n-k) * T(n,k) = A309052(n).

Sum_{k=0..2^n-1} T(2^n-1,k) = A003095(n+1).

Sum_{k=0..2^n-1} (2^n-1-k) * T(2^n-1,k) = A024358(n).

Sum_{k=0..n} (T(n,k) - T(n-1,k)) = A168542(n).

T(m,m-n) = A000108(n) for m >= 2^n-1 = A000225(n).

T(2^n-1,k) = A202019(n+1,k+1).

EXAMPLE

T(6,0) = 1: 111111.

T(6,1) = 3: 111011, 111101, 111110.

T(6,2) = 4: 110110, 111001, 111010, 111100.

T(6,3) = 4: 101001, 110010, 110100, 111000.

T(6,4) = 2: 101000, 110000.

T(6,5) = 1: 100000.

T(6,6) = 1: 000000.

T(7,4) = T(7,7-3) = A000108(3) = 5: 1010001, 1010010, 1100100, 1101000, 1110000.

Triangle T(n,k) begins:

1;

1, 1;

1, 1, 1;

1, 2, 1, 1;

1, 2, 2, 1, 1;

1, 3, 3, 2, 1, 1;

1, 3, 4, 4, 2, 1, 1;

1, 4, 6, 6, 5, 2, 1, 1;

1, 4, 7, 8, 7, 5, 2, 1, 1;

1, 5, 10, 12, 11, 8, 5, 2, 1, 1;

1, 5, 11, 16, 17, 13, 9, 5, 2, 1, 1;

1, 6, 15, 23, 27, 24, 16, 10, 5, 2, 1, 1;

1, 6, 16, 27, 34, 34, 27, 18, 11, 5, 2, 1, 1;

...

MAPLE

b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(

x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))

end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):

seq(T(n), n=0..14);

MATHEMATICA

b[n_] := b[n] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f]*b[n - 1 - f]]][Min[g - 1, n - g/2]]][2^Floor[Log[2, n]]]];

T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n]];

T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Oct 04 2019, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000012, A110654, A114220 (for n>0), A326504, A326505, A326506, A326507, A326508, A326509, A326510, A326511.

Row sums give A091980(n+1).

T(2n,n) gives A309050.

Rows reversed converge to A000108.

Cf. A000225, A000295, A003095, A024358, A056971, A063915, A137560, A168542, A202019, A309051, A309052.

Sequence in context: A008284 A114088 A208245 * A274190 A322596 A037306

Adjacent sequences: A309046 A309047 A309048 * A309050 A309051 A309052

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 09 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 19:19 EST 2022. Contains 358669 sequences. (Running on oeis4.)