login
A309045
Expansion of Product_{k>=0} (1 + x^(3^k) + x^(2*3^k) + x^(3^(k+1)))^(2^k).
1
1, 1, 1, 3, 2, 2, 5, 3, 3, 11, 8, 8, 19, 11, 11, 25, 14, 14, 41, 27, 27, 59, 32, 32, 70, 38, 38, 110, 72, 72, 158, 86, 86, 190, 104, 104, 289, 185, 185, 395, 210, 210, 455, 245, 245, 645, 400, 400, 829, 429, 429, 915, 486, 486, 1269, 783, 783, 1623, 840, 840, 1800, 960, 960, 2472
OFFSET
0,4
COMMENTS
The trisection equals the self-convolution of this sequence.
FORMULA
G.f.: Product_{k>=0} ((1 - x^(4*3^k))/(1 - x^(3^k)))^(2^k).
G.f. A(x) satisfies: A(x) = (1 + x + x^2 + x^3) * A(x^3)^2.
MATHEMATICA
nmax = 63; CoefficientList[Series[Product[(1 + x^(3^k) + x^(2 3^k) + x^(3^(k + 1)))^(2^k), {k, 0, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x]
nmax = 63; A[_] = 1; Do[A[x_] = (1 + x + x^2 + x^3) A[x^3]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 09 2019
STATUS
approved