login
Square array A(n, k) = Sum_{j=0..n} binomial(n,j)^k, n >= 0, k >= 0, read by antidiagonals.
12

%I #61 Aug 30 2022 14:15:53

%S 1,1,2,1,2,3,1,2,4,4,1,2,6,8,5,1,2,10,20,16,6,1,2,18,56,70,32,7,1,2,

%T 34,164,346,252,64,8,1,2,66,488,1810,2252,924,128,9,1,2,130,1460,9826,

%U 21252,15184,3432,256,10,1,2,258,4376,54850,206252,263844,104960,12870,512,11

%N Square array A(n, k) = Sum_{j=0..n} binomial(n,j)^k, n >= 0, k >= 0, read by antidiagonals.

%C A(n,k) is the constant term in the expansion of (Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0. - _Seiichi Manyama_, Oct 27 2019

%C Let B_k be the binomial poset containing all k-tuples of equinumerous subsets of {1,2,...} ordered by inclusion componentwise (described in Stanley reference below). Then A(k,n) is the number of elements in any n-interval of B_k. - _Geoffrey Critzer_, Apr 16 2020

%C Column k is the diagonal of the rational function 1 / (Product_{j=1..k} (1-x_j) - Product_{j=1..k} x_j) for k>0. - _Seiichi Manyama_, Jul 11 2020

%D R. P. Stanley, Enumerative Combinatorics Vol I, Second Edition, Cambridge, 2011, Example 3.18.3 d, page 366.

%H Seiichi Manyama, <a href="/A309010/b309010.txt">Antidiagonals n = 0..100, flattened</a>

%F A(n, k) = Sum_{j=0..n} binomial(n,j)^k (array).

%F A(n, n+1) = A328812(n).

%F A(n, n) = A167010(n).

%F T(n, k) = A(k, n-k) (antidiagonals).

%F T(n, n) = A000027(n+1).

%F T(n, n-1) = A000079(n-1).

%F T(n, n-2) = A000984(n-2).

%F T(n, n-3) = A000172(n-3).

%F T(n, n-4) = A005260(n-4).

%F T(n, n-5) = A005261(n-5).

%F T(n, n-6) = A069865(n-6).

%F T(n, n-7) = A182421(n-7).

%F T(n, n-8) = A182422(n-8).

%F T(n, n-9) = A182446(n-9).

%F T(n, n-10) = A182447(n-10).

%F T(n, n-11) = A342294(n-11).

%F T(n, n-12) = A342295(n-12).

%F Sum_{n>=0} A(n,k) x^n/(n!^k) = (Sum_{n>=0} x^n/(n!^k))^2. - _Geoffrey Critzer_, Apr 17 2020

%e Square array, A(n, k), begins:

%e 1, 1, 1, 1, 1, 1, ... A000012;

%e 2, 2, 2, 2, 2, 2, ... A007395;

%e 3, 4, 6, 10, 18, 34, ... A052548;

%e 4, 8, 20, 56, 164, 488, ... A115099;

%e 5, 16, 70, 346, 1810, 9826, ...

%e 6, 32, 252, 2252, 21252, 206252, ...

%e Antidiagonals, T(n, k), begin:

%e 1;

%e 1, 2;

%e 1, 2, 3;

%e 1, 2, 4, 4;

%e 1, 2, 6, 8, 5;

%e 1, 2, 10, 20, 16, 6;

%e 1, 2, 18, 56, 70, 32, 7;

%e 1, 2, 34, 164, 346, 252, 64, 8;

%e 1, 2, 66, 488, 1810, 2252, 924, 128, 9;

%e 1, 2, 130, 1460, 9826, 21252, 15184, 3432, 256, 10;

%t nn = 8; Table[ek[x_] := Sum[x^n/n!^k, {n, 0, nn}];Range[0, nn]!^k CoefficientList[Series[ek[x]^2, {x, 0, nn}],x], {k, 0, nn}] // Transpose // Grid (* _Geoffrey Critzer_, Apr 17 2020 *)

%o (PARI) A(n, k) = sum(j=0, n, binomial(n, j)^k); \\ _Seiichi Manyama_, Jan 08 2022

%o (Magma) [(&+[Binomial(k,j)^(n-k): j in [0..k]]): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Aug 26 2022

%o (SageMath) flatten([[sum(binomial(k,j)^(n-k) for j in (0..k)) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Aug 26 2022

%Y Columns k=0..12 give A000027(n+1), A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.

%Y Main diagonal gives A167010.

%Y Cf. A328747, A328748, A328807, A328812.

%Y Cf. A000012, A007395, A052548, A115099.

%K nonn,tabl

%O 0,3

%A _Seiichi Manyama_, Jul 06 2019