login
A308998
Sum of the largest parts in the partitions of n into 8 parts.
8
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 9, 17, 27, 46, 69, 108, 156, 229, 319, 452, 611, 835, 1107, 1473, 1911, 2490, 3176, 4062, 5108, 6426, 7975, 9903, 12145, 14894, 18085, 21943, 26391, 31720, 37829, 45076, 53350, 63069, 74124, 87020, 101607, 118504, 137561
OFFSET
0,10
FORMULA
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} (n-i-j-k-l-m-o-p).
a(n) = A308989(n) - A308990(n) - A308991(n) - A308992(n) - A308994(n) - A308995(n) - A308996(n) - A308997(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[(n-i-j-k-l-m-o-p), {i, j, Floor[(n - j - k - l - m - o - p)/2]}], {j, k, Floor[(n - k - l - m - o - p)/3]}], {k, l, Floor[(n - l - m - o - p)/4]}], {l, m, Floor[(n - m - o - p)/5]}], {m, o, Floor[(n - o - p)/6]}], {o, p, Floor[(n - p)/7]}], {p, Floor[n/8]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 04 2019
STATUS
approved