%I
%S 0,0,2,1,3,0,2,1,1,3,4,2,0,5,0,2,1,5,1,3,4,0,2,0,5,1,3,1,2,4,0,2,1,5,
%T 3,1,3,4,0,6,2,0,5,1,7,3,1,2,4,0,4,5,0,3,1,0,2,1,5,3,4,1,3,4,0,7,2,2,
%U 0,5,1,6,9,3,1,2,4,0,5,4,6,0,3,1,7,5,7,8,6,4,10
%N Irregular array read by rows: row k (k>=1) contains k^2 numbers, formed by filling in a k X k square by upwards antidiagonals so entries in all rows, columns, diagonals, antidiagonals are distinct, and then reading that square across rows.
%C The first row of the k X k square converges to A295563 as k increases.
%C When filling in the k X k square, always choose the smallest possible number. Each k X k square is uniquely determined.
%H I. V. Serov, <a href="/A308881/b308881.txt">Rows of first 32 squares, flattened (There are 1^2+2^2+...+32^2 = 11440 entries.)</a>
%H F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: nonattacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52.
%e The first eight squares are (here A=10, B=11, C=12):
%e 0
%e 
%e 02
%e 13
%e 
%e 021
%e 134
%e 205
%e 
%e 0215
%e 1340
%e 2051
%e 3124
%e 
%e 02153
%e 13406
%e 20517
%e 31240
%e 45031
%e 
%e 021534
%e 134072
%e 205169
%e 312405
%e 460317
%e 57864A
%e 
%e 0215349
%e 1340725
%e 2051864
%e 3124058
%e 4603172
%e 5786493
%e 6432587
%e 
%e 0215349A
%e 13407258
%e 20518643
%e 31240786
%e 4603152B
%e 5786493C
%e 64325879
%e 756893A2
%e 
%Y Cf. A295563, A308880.
%K nonn,tabf
%O 1,3
%A _N. J. A. Sloane_, Jun 29 2019
