login
A308868
Sum of the smallest parts in the partitions of n into 6 parts.
6
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 15, 22, 29, 40, 51, 70, 86, 112, 139, 176, 214, 269, 321, 394, 470, 567, 668, 801, 933, 1103, 1281, 1498, 1725, 2007, 2293, 2643, 3010, 3443, 3897, 4439, 4995, 5652, 6341, 7135, 7967, 8933, 9930, 11079, 12283, 13645
OFFSET
0,9
FORMULA
a(n) = n * Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} m.
a(n) = A308867(n) - A308869(n) - A306670(n) - A306671(n) - A308872(n) - A308873(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[m, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 29 2019
STATUS
approved