This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308861 Expansion of e.g.f. 1/(1 - x*(1 + x)*exp(x)). 3
 1, 1, 6, 39, 352, 3965, 53556, 844123, 15204960, 308118105, 6937562980, 171826160231, 4642588564032, 135891789038629, 4283619809941668, 144674451274329075, 5211965027738046016, 199498704931954788785, 8085413817213212761668, 345895984008645703002559 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: 1 / (1 - Sum_{k>=1} k^2*x^k/k!). a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^2 * a(n-k). a(n) ~ n! / (r^(n+1) * exp(r) * (1 + 3*r + r^2)), where r = A201941 = 0.44413022882396659058546632949098466707932096994213775695918... is the root of the equation exp(r)*r*(1 + r) = 1. - Vaclav Kotesovec, Jun 29 2019 MATHEMATICA nmax = 19; CoefficientList[Series[1/(1 - x (1 + x) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}] CROSSREFS Cf. A000290, A006153, A033453, A033462, A302189, A308862. Sequence in context: A265953 A246571 A031972 * A124577 A006678 A252761 Adjacent sequences:  A308858 A308859 A308860 * A308862 A308863 A308864 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jun 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)