login
A308820
a(n) = Product_{k=1..n} ceiling(n/k)!.
2
1, 2, 12, 96, 2880, 34560, 5806080, 92897280, 25082265600, 2006581248000, 794606174208000, 19070548180992000, 208250386136432640000, 5831010811820113920000, 4198327784510482022400000, 3224315738504050193203200000, 14799609239733590386802688000000
OFFSET
1,2
LINKS
FORMULA
a(n) = Product_{k=1..n-1} Product_{d|k} (d + 1).
a(n) = Product_{k=1..n-1} (k + 1)^floor((n-1)/k). - Ridouane Oudra, Apr 10 2023
a(n) = A131385(n)*A092143(n-1). - Ridouane Oudra, Sep 20 2024
MAPLE
seq(mul(ceil(n/k)!, k=1..n), n=1..30); # Ridouane Oudra, Apr 10 2023
MATHEMATICA
a[n_] := Product[Ceiling[n/k]!, {k, 1, n}]; Table[a[n], {n, 1, 17}]
PROG
(PARI) a(n) = prod(k=1, n, ceil(n/k)!); \\ Michel Marcus, Jun 27 2019
(Magma) [(&*[Factorial(Ceiling(n/(n-j+1))): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Mar 08 2023
(SageMath)
def A308820(n): return product( factorial(ceil(n/(n-k+1))) for k in range(1, n+1))
[A308820(n) for n in range(1, 21)] # G. C. Greubel, Mar 08 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 26 2019
STATUS
approved