login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308800 Primes p such that A001177(p) = (p-1)/7. 9
2731, 3739, 4831, 6091, 11159, 13679, 14771, 16871, 19559, 20399, 24179, 26111, 29191, 31039, 33811, 34511, 34679, 35911, 40111, 41651, 49211, 55259, 56099, 60859, 62819, 69539, 71191, 71359, 71471, 73291, 74831, 85751, 87991, 96979, 97231, 97931, 104959, 108179 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/7, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 7. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 0 | 78
4 | 4 | 609
5 | 36 | 4777
6 | 347 | 39210
7 | 2801 | 332136
8 | 24291 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).
LINKS
MATHEMATICA
pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 7] == 1, If[pn[p] == (p - 1)/7, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
PROG
(PARI) Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4, p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M, p)^v[d])[2, 1]==0, return(v[d]))))
forprime(p=2, 109000, if(Entry_for_decomposing_prime(p)==(p-1)/7, print1(p, ", ")))
CROSSREFS
Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), this sequence (s=7), A308801 (s=8), A308802 (s=9).
Sequence in context: A166780 A068305 A031812 * A104699 A116461 A266229
KEYWORD
nonn
AUTHOR
Jianing Song, Jun 25 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 15:35 EDT 2024. Contains 371780 sequences. (Running on oeis4.)