%I #5 Jun 23 2019 09:52:30
%S 32,44,58,68,24,22,130,62,110,84,164,100,84,20,156,88,292,280,186,300,
%T 100,174,200,382,126,240,366,196,130,94,194,292,336,338,400,86,270,
%U 486,222,52,90,92,22,592,522,20,174,338,428,80,226,236,242,554,48,224,408,502,628,32,12,200,378,290,514,260,732,220,330,628,544,744,102,66,868,162,418,520,820,156,166
%N Irregular triangle T(n,k) read by rows with 1 <= k <= A091887 even indices 2i such that n-th irregular prime p (A000928) divides the numerator of the Bernoulli numbers B_{2i} (A000367) with 0 <= 2i <= p-3.
%C First index T(n,1) in row n is A035112(n).
%e Triangle starts with
%e n = 1 => p = 37 divides the numerator of B_{32} = -7709321041217;
%e n = 2 => p = 59: B_{44};
%e n = 3 => p = 67: B_{58};
%e n = 4 => p = 101: B_{68};
%e n = 5 => p = 103: B_{24};
%e n = 6 => p = 131: B_{22};
%e n = 7 => p = 149: B_{130};
%e n = 8 => p = 157: B_{62}, B_{110};
%e n = 9 => p = 233: B_{84};
%e etc.
%p T:=[]:
%p for j from 2 to 168 do
%p p:=ithprime(j);
%p B:=[]:
%p for i from 1 to (p-3)/2 do
%p if type(numer(bernoulli(2*i))/p,integer) then B:=[op(B),2*i]: fi:
%p od:
%p T:=[op(T),op(B)];
%p od:
%p op(T);
%Y Cf. A000367, A000928, A035112, A060974, A060975, A073276, A073277, A091887.
%K nonn,tabf
%O 1,1
%A _Martin Renner_, Jun 23 2019