login
A308762
Sum of the third largest parts of the partitions of n into 4 squarefree parts.
4
0, 0, 0, 0, 1, 1, 2, 3, 6, 6, 10, 11, 16, 16, 22, 23, 35, 38, 51, 57, 75, 76, 94, 99, 125, 128, 158, 162, 208, 209, 242, 251, 311, 317, 376, 390, 467, 478, 548, 553, 672, 682, 784, 801, 957, 957, 1096, 1101, 1284, 1294, 1471, 1469, 1725, 1717, 1917, 1918
OFFSET
0,7
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k)^2 * j, where mu is the Möbius function (A008683).
a(n) = A308783(n) - A308768(n) - A308769(n) - A308770(n).
MATHEMATICA
Table[Sum[Sum[Sum[j * MoebiusMu[k]^2*MoebiusMu[j]^2*MoebiusMu[i]^2* MoebiusMu[n - i - j - k]^2, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 23 2019
STATUS
approved